MATH5011 Exercise 1

(1) Let $\{A_k\}_{k=1}^{\infty}$ be a sequence of measurable sets in (X, \mathcal{M}) . Let

 $A = \{ x \in X : x \in A_k \text{ for infinitely many } k \} ,$

and

 $B = \{ x \in X : x \in A_k \text{ for all except finitely many } k \} .$

Show that A and B are measurable.

(2) Let $\Psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous. Show that $\Psi(f, g)$ are measurable for any measurable functions f, g. This result contains Proposition 1.3 as a special case.

(3) Show that $f: X \to \overline{\mathbb{R}}$ is measurable if and only if $f^{-1}([a, b])$ is measurable for all $a, b \in \overline{\mathbb{R}}$.

(4) Let $f : X \times [a, b] \to \mathbb{R}$ satisfy (a) for each $x, y \mapsto f(x, y)$ is Riemann integrable, and (b) for each $y, x \mapsto f(x, y)$ is measurable with respect to some σ -algebra \mathcal{M} on X. Show that the function

$$F(x) = \int_{a}^{b} f(x, y) dy$$

is measurable with respect to \mathcal{M} .

- (5) Let $f, g, f_k, k \ge 1$, be measurable functions from X to $\overline{\mathbb{R}}$.
 - 1. Show that $\{x : f(x) < g(x)\}$ and $\{x : f(x) = g(x)\}$ are measurable sets.

2. Show that $\{x : \lim_{k \to \infty} f_k(x) \text{ exists and is finite}\}$ is measurable.

(6) There are two conditions (i) and (ii) in the definition of a measure μ on (X, \mathcal{M}) . Show that (i) can be replaced by the "nontriviality condition": There exists some $E \in \mathcal{M}$ with $\mu(E) < \infty$.

(7) Let
$$\{A_k\}$$
 be measurable and $\sum_{k=1}^{\infty} \mu(A_k) < \infty$ and

 $A = \{ x \in X : x \in A_k \text{ for infinitely many } k \}.$

From (1) we know that A is measurable. Show that $\mu(A) = 0$.

(8) Let B be the set defined in (1). Let μ be a measure on (X, \mathcal{M}) . Show that

$$\mu(B) \le \liminf_{k \to \infty} \mu(A_k)$$

(9) Here we review Riemann integral. This is an optional exercise. Let f be a bounded function defined on $[a, b], a, b \in \mathbb{R}$. Given any partition $P = \{a = x_0 < x_1 < \cdots < x_n = b\}$ on [a, b] and tags $z_j \in [x_j, x_{j+1}]$, there corresponds a *Riemann sum* of f given by $R(f, P, \mathbf{z}) = \sum_{j=0}^{n-1} f(z_j)(x_{j+1} - x_j)$. The function fis called *Riemann integrable* with integral L if for every $\varepsilon > 0$ there exists some δ such that

$$|R(f, P, \mathbf{z}) - L| < \varepsilon$$

whenever $||P|| < \delta$ and \mathbf{z} is any tag on P. (Here $||P|| = \max_{j=0}^{n-1} |x_{j+1} - x_j|$ is the length of the partition.) Show that

(a) For any partition P, define its Darboux upper and lower sums by

$$\overline{R}(f, P) = \sum_{j} \sup \{ f(x) : x \in [x_j, x_{j+1}] \} (x_{j+1} - x_j),$$

and

$$\underline{R}(f, P) = \sum_{j} \inf \left\{ f(x) : x \in [x_j, x_{j+1}] \right\} (x_{j+1} - x_j)$$

respectively. Show that for any sequence of partitions $\{P_n\}$ satisfying $||P_n|| \to 0$ as $n \to \infty$, $\lim_{n\to\infty} \overline{R}(f, P_n)$ and $\lim_{n\to\infty} \underline{R}(f, P_n)$ exist.

(b) $\{P_n\}$ as above. Show that f is Riemann integrable if and only if

$$\lim_{n \to \infty} \overline{R}(f, P_n) = \lim_{n \to \infty} \underline{R}(f, P_n) = L.$$

(c) A set E in [a, b] is called of measure zero if for every $\varepsilon > 0$, there exists a countable subintervals J_n satisfying $\sum_n |J_n| < \varepsilon$ such that $E \subset \bigcup_n J_n$. Prove Lebsegue's theorem which asserts that f is Riemann integrable if and only if the set consisting of all discontinuity points of f is a set of measure zero. Google for help if necessary.